Aveiro method in reproducing kernel Hilbert spaces under complete dictionary
نویسندگان
چکیده
منابع مشابه
Real reproducing kernel Hilbert spaces
P (α) = C(α, F (x, y)) = αF (x, x) + 2αF (x, y) + F (x, y)F (y, y), which is ≥ 0. In the case F (x, x) = 0, the fact that P ≥ 0 implies that F (x, y) = 0. In the case F (x, y) 6= 0, P (α) is a quadratic polynomial and because P ≥ 0 it follows that the discriminant of P is ≤ 0: 4F (x, y) − 4 · F (x, x) · F (x, y)F (y, y) ≤ 0. That is, F (x, y) ≤ F (x, y)F (x, x)F (y, y), and this implies that F ...
متن کاملDistribution Embeddings in Reproducing Kernel Hilbert Spaces
The “kernel trick” is well established as a means of constructing nonlinear algorithms from linear ones, by transferring the linear algorithms to a high dimensional feature space: specifically, a reproducing kernel Hilbert space (RKHS). Recently, it has become clear that a potentially more far reaching use of kernels is as a linear way of dealing with higher order statistics, by embedding proba...
متن کاملQuantile Regression in Reproducing Kernel Hilbert Spaces
In this paper we consider quantile regression in reproducing kernel Hilbert spaces, which we refer to as kernel quantile regression (KQR). We make three contributions: (1) we propose an efficient algorithm that computes the entire solution path of the KQR, with essentially the same computational cost as fitting one KQR model; (2) we derive a simple formula for the effective dimension of the KQR...
متن کاملBayesian Learning in Reproducing Kernel Hilbert Spaces
Support Vector Machines nd the hypothesis that corresponds to the centre of the largest hypersphere that can be placed inside version space, i.e. the space of all consistent hypotheses given a training set. The boundaries of version space touched by this hypersphere de ne the support vectors. An even more promising approach is to construct the hypothesis using the whole of version space. This i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Methods in the Applied Sciences
سال: 2017
ISSN: 0170-4214
DOI: 10.1002/mma.4526